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Abstract. Moving target defense (MTD) is a proactive defense approach that
aims to thwart attacks by continuously changing the attack surface of a system
(e.g., changing host or network configurations), thereby increasing the adver-
sary’s uncertainty and attack cost. To maximize the impact of MTD, a defender
must strategically choose when and what changes to make, taking into account
both the characteristics of its system as well as the adversary’s observed activities.
Finding an optimal strategy for MTD presents a significant challenge, especially
when facing a resourceful and determined adversary who may respond to the
defender’s actions. In this paper, we propose a multi-agent partially-observable
Markov Decision Process model of MTD and formulate a two-player general-
sum game between the adversary and the defender. To solve this game, we pro-
pose a multi-agent reinforcement learning framework based on the double oracle
algorithm. Finally, we provide experimental results to demonstrate the effective-
ness of our framework in finding optimal policies.

1 Introduction

Traditional approaches for security focus on preventing intrusions (e.g, hardening sys-
tems to decrease the occurrence and impact of vulnerabilities) or on detecting and re-
sponding to intrusions (e.g., restoring the configuration of compromised servers). While
these passive and reactive approaches are useful, they cannot provide perfect security in
practice. Further, these approaches let adversaries perform reconnaissance and planning
unhindered, giving them a significant advantage in information and initiative. As adver-
saries are becoming more sophisticated and resourceful, it is imperative for defenders
to augment traditional approaches with more proactive ones, which can give defenders
the upper hand.

Moving Target Defence (MTD) is a proactive approach that changes the rules of
the game in favor of the defenders. MTD techniques enable defenders to thwart cyber-
attacks by continuously and randomly changing the configuration of their assets (i.e.,
networks, hosts, etc.). These changes increase the uncertainty and complexity of attacks,
making them computationally expensive for the adversary [32] or putting the adversary
in an infinite loop of exploration [28].
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Currently, system administrators typically have to manually select MTD configura-
tions to be deployed on their networked systems based on their previous experiences [9].
This approach has two main limitations. First, it can be very time consuming since 1)
there are constraints on data locations, so that the system administrator must make sure
that constraints are met before deploying MTD, 2) physical connectivity of servers can-
not be easily changed, and 3) resources are limited. Second, it is difficult to capture the
trade-off between security and efficiency since the most secure configuration is total
randomization, but this has high performance overhead [5].

In light of this, it is crucial to provide automated approaches for deploying MTD,
which maximize security benefits for the protected assets while preserves the efficiency
of the system. The key ingredient to automation of MTD deployment is finding a design
model that reflects multiple aspects of the MTD environment [13, 32, 22, 2]. Further,
we need a decision making algorithm for the model to select when to deploy an MTD
technique and where to deploy it [28]. Finding optimal strategies for the deployment
of MTD is computationally challenging since there can be huge number of applicable
MTD deployment combinations even with trivial number of MTD configurations or
in-control assets. Further, the adversary might adapt to these strategies.

One of the main approaches for finding decision making policies is Independent
Reinforcement Learning (InRL). Recently, many research efforts have applied InRL
to find the optimal action policies in fully or partially observable environments in vari-
ous domains. These domains include: cybersecurity, hardware design, robotics, finance,
and etc. In InRL, an agent learns to make optimal decisions by continuously interact-
ing with its environment. In general, traditional reinforcement learning techniques use
tabular approaches to store estimated rewards (e.g., Q-Learning) [10]. To address chal-
lenges of reinforcement learning such as exploding state-action space, Artificial Neural
Networks (ANN) have replaced table based approaches in many domains, thereby de-
creasing the training time and memory requirements. This led to the emergence of deep
reinforcement learning (DRL) algorithms such as DQL [18].

Contributions We formulate a multi-agent partially-observable Markov decision pro-
cess for MTD, and based on this model, we propose a two-player general-sum game
between the adversary and the defender. Then, we present a multi-agent deep reinforce-
ment learning approach to solve this game. Our main contributions are as follows:

– We propose a multi-agent partially-observable Markov decision process for MTD.
– We propose a two-player general-sum game between the adversary and the de-

fender based on this model.
– We formulate the problem of finding adaptive MTD policies as finding the mixed-

strategy Nash equilibrium (MSNE) of this game.
– We propose a compact memory representation for the defender and adversary agents,

which helps them to better operate in the partially-observable environment.
– We propose a computational approach for finding the optimal MTD policy using

Deep Q-Learning and the Double Oracle algorithm.
– We evaluate our approach numerically while exploring various game parameters.
– We show that our approach is viable in terms of computational cost.
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Organization The rest of the paper is organized as follows. In Section 2, we describe
preliminaries, including InRL (Section 2.1) and one specific InRL algorithm, Deep Q
Learning (Section 2.2). In Section 3, we introduce a multi-agent partially-observable
Markov decision process for MTD, which is used as the basis of the MARL. In Sec-
tion 4, we formulate a two-player general-sum game between the adversary and the
defender, and formulate the problem of finding adaptive MTD policies as finding the
MSNE of the game. In Section 5, we propose our solution to solving the MTD game.
In Section 6, we provide a thorough numerical analysis of our approach. In Section 7,
we discuss the related work. Finally, in Section 8, we provide concluding remarks.

2 Preliminaries

In this section, we describe a family of reinforcement learning algorithms (Section 2.1),
and one particular algorithm in this family, namely Deep Q-Learning (Section 2.2).
Readers who are familiar with these concepts may skip this section and continue to
Section 3.

2.1 Independent Reinforcement Learning

One of the primary approaches for finding a decision-making policy is Independent
Reinforcement Learning (InRL), which focuses on interactions of a single agent and its
environment to maximize the agent’s gain (represented as rewards or utilities) from the
environment. Figure 1 shows the interactions between different components of InRL. A
basic InRL environment is a Partially-Observable Markov Decision Process (POMDP),
which can be represented as a tuple:

POMDP = 〈S,A,T,R,O〉. (1)

where S is the set of all possible states of the environment, A is the set of all possible
actions by the agent, T is the set of stochastic transition rules and, R is the immediate
reward of a state transition, and O is the set of observation rules of the agent. For more
detailed information on POMDP, please refer to [23].

The objective of InRL is to find a policy π, which is a mapping from observation
space to action space, such that:

π(oτ ) 7→ aτ (2)

which maximizes U∗τ = E

[ ∞∑
t=0

γt · rt+τ

∣∣∣∣∣ π
]

(3)

where oτ is the observation received in time step τ , aτ+1 is the action taken after that
observation, and rτ is the reward received in time step τ after a state transition due to
action aτ . Also, the discount factor γ ∈ [0, 1) prioritizes rewards received in the current
time step over future rewards. When γ = 0, the agent cares only about the current
reward; and when γ = 1, the agent cares about all future rewards equally. Note that in a
partially-observable environment, the agent should consider its history of observations.
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However, considering the complete history of observations may be computationally
challenging, so practical approaches limit the observation history (e.g., limited number
of recent observations [18], agent memory [21]). We propose a compact representation
of history in Section 5.2, but for ease of presentation, we will treat policies as mappings
from most recent observations until then.
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Fig. 1: Independent reinforcement
learning.

The training is done in iterations called steps.
In each step, the agent decides on an action to take
which updates the state of the environment based
on transition rules, and the agent receives the new
observation from the environment and immediate
reward of transition. To make sure that the ma-
jority of action/observation space is explored and
the learning agent is not stuck in a locally optimal
state, after an arbitrary number of steps, the en-
vironment state is reset to an arbitrary/random initial state and the agent receives the
observation of the initial state. In the terms of RL, steps between one reset and the next
one are called an epoch of training.

Algorithm 1: Deep-Q Learning
Result: policy σ
Q← random;
for Ne episodes do

O ← reset game();
ετ ← 1;
for τ ∈ {0, . . . , Tepoch} do

if random[0, 1] ≤ ετ then
a← random action;

else
a← argmaxa′ Q(S, a′);

end
(S′, r)← step game(a);
add e = 〈S, S′, a, r〉 to E;
sample X from E;
update DQN based on X;
S ← S′;
decay ετ ;

end
end
σ ← 〈S 7→ argmaxaQ(S, a)〉;

Algorithm 2: Adaptive Solver
Result: set of pure policies Πa and

Πd

Πa ← attacker heuristics;
Πd ← defener heuristics;
while Up(σp, σp̄) not converged do

σa, σd ←
solve MSNE(Πa, Πd);
θ ← random;
πa+ ← train(T ·Ne, enva[σd], θ);
Πa ← Πa ∪ πa+;
assess πa+;
σa, σd ←
solve MSNE(Πa, Πd);
θ ← random;
πd+ ← train(T ·Ne, envd[σa], θ);
Πd ← Πd ∪ πd+;
assess πd+;

end

Each step to the environment updates the state of the system based on the agent’s
action (a) and the current state of the environment (s), and returns a new observation
(o), immediate utility given to agent (r), and whether the environment is finished or not.
This new information and the previous observation of the agent forms an experience.
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Specifically, an experience is defined as a tuple of:

e = 〈oτ , aτ , oτ+1, rτ 〉 (4)

where oτ and aτ are the agent’s observation and action at time step τ ; and oτ+1 and rτ
are the agent’s observation and immediate utility received at the next time step τ + 1.
The set of recent experiences is used to update the policy.

Reinforcement learning aims to maximize the received utility of the agent (U∗)
by trial and error: interacting with the environment (randomly, following heuristics, or
based on the experiences that the agent has seen so far). Generally, during the train-
ing, there are two ways to find actions to be taken at each step: (1) Exploitation: we
use the currently trained policy to choose actions, which helps the agent to more accu-
rately find U∗ values of states. (2) Exploration: to find actions that lead to higher utility
by selecting actions at random and exploring the action/observation space. One of ap-
proaches for choosing between exploration or exploitation is the ε-greedy approach,
where in each step the agent explores with probability ε, or takes the current optimal
action with probability 1− ε.

2.2 Deep-Q-Network Learning

The Deep-Q-Network Learning algorithm is described in Algorithm 1. Q-learning uses
a Q function to estimate the expected future utilities of an action in an observation state
(Equation (3)):

Q(oτ , aτ ) = U∗τ |π←argmaxa′ Q(oτ ,a′) (5)

With a tabular approach of storing the Q value for each observation/action, we can find
the value of the Q function by applying the Bellman optimization equation:

Q(oτ , aτ ) = (1− αq) ·Q(oτ , aτ ) + αq · (rτ + γ ·max
a′

Q(oτ+1, a
′)︸ ︷︷ ︸

TD Target

) (6)

where αq is the learning rate of the Q function. The idea for updating the Q function
is that the Q function should minimize the temporal difference (TD) error, i.e., the
difference between the predicted Q value, and the actual expected utility (U∗ while
following π ← argmaxa′ Q(Oτ , a

′)).
When we are dealing with environments with highly dimensional action/observation

spaces, tabular based Q-learning is infeasible since: 1) the table for storing Q-values
might not fit into memory, and 2) the action and observation spaces need to be enu-
merated many times for the algorithm to learn an optimal policy. To address these chal-
lenges, Mnih et al. [18] suggests to use multi layer perceptrons (MLP) as approximators
for theQ function. Using MLP asQ-value approximator makes the deepQ-learning ap-
proach feasible for such environments since 1) at most thousands parameters are stored,
and 2) MLP models can generalize the relation between observations and actions; as a
result, learning agents need less time for exploring the observation/action space.
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To optimize the parameters of MLP (θ), we can use gradient descent to minimize the
TD error of the network. With the same TD target as Equation (6), and taking optimal
action as argmaxa′ Q(oτ , a

′|θ), the TD target will be:

qτ = rτ + γ ·Q(oτ+1, argmaxa′ Q(oτ , a
′|θ))|θ) (7)

Suppose we have a batch of experiences X for updating the MLP parameters, then
we can define a mean squared error (MSE) loss function and apply gradient descent
with learning rate αθ to optimise the MLP parameters :

Lθ =
1

|X|

X∑
i

(qτ −Q(oτ , aτ |θ))2 (8)

3 Model

To model adaptive Moving Target Defense, we build a Multi-Agent Partially-Observable
Markov Decision Process (MAPOMDP) based on the model of Prakash and Well-
man [22]. A Multi-Agent POMDP is a generalization of POMDP to consider multiple
agents influencing the environment simultaniously. Formally:

MAPOMDP = 〈S, {Ai},T, {Ri}, {Oi}〉 (9)

where Ai is the action space, Oi is the observation set of observation rules, and Ri
is the immediate reward of a state transition for player i. In the following subsections
(Sections 3.1 through 3.5), we describe these sets in terms of an MTD model.

In this adversarial model, there are two players, a defender and an adversary (p = a
and p = d, resp.), who compete for control over a set of servers. At the beginning
of the game, all servers are under the control of the defender. To take control of a
server, the adversary can launch a “probe” against the server at any time, which either
compromises the server or increases the success probability of subsequent probes. To
keep the servers safe, the defender can “reimage” a server at any time, which takes the
server offline for some time, but cancels the adversary’s progress and control. The goal
of the defender is to keep servers uncompromised (i.e., under the defender’s control)
and available (i.e., online). The goal of the adversary is to compromise the servers or
make them unavailable. For a list of symbols used in this paper, see Table 1.

3.1 Environment and Players

There are M servers and two players, a defender and an adversary. The servers are in-
dependent of each other in the sense that they are independently attacked, defended, and
controlled. The game environment is explained in detail in the following subsections.

3.2 State

Time is discrete, and in a given time step τ , the state of each server i is defined by tuple
sτi = 〈ρ, χ, υ〉 where
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Table 1: List of Symbols and Experimental Values
Symbol Description Baseline Value

Environment, Agents, Actions
M number of servers 10
∆ number of time steps for which a server is unavailable after reimaging 7
ν probability of the defender not observing a probe 0
αθ knowledge gain of each probe 0.05
CA attack (probe) cost 0.20
θpsl slope of reward function for player p 5
θpth steep point threshold of reward function for player p 0.2
wp weighting of reward for having servers up and in control for player p 0 / 1
rpτ reward of player p in time step τ

Heuristic Strategies
PD period for defender’s periodic strategies 4
PA period for adversary’s periodic strategies 1
π threshold of number of probes on a server for PCP defender 7
τ threshold for adversary’s / defender’s Control-Threshold strategy 0.5 / 0.8

Reinforcement Learning
T length of the game (number of time steps) 1000
γ temporal discount factor 0.99
εp exploration fraction 0.2
εf final exploration value 0.02
αt learning rate 0.0005
|E| experience replay buffer size 5000
|X| training batch size 32
Ne number of training episodes 500

– ρ ∈ N0 represents the number of probes lunched against server i since the last
reimage,

– χ ∈ {adv, def} represents the player controlling the server, and
– υ ∈ {up} ∪ N0 represents if the server is online (i.e., up) or if it is offline (i.e.,

down) with the identifier of the time step in which the server was reimaged.

3.3 Actions

In each time step, a player may take either a single action or no action at all. The
adversary’s action is to select a server and probe it. Probing a server takes control of
it with probability 1 − e−α·(ρ+1) where ρ is the number of previous probes and α is
a constant that determines how fast the probability of compromise grows with each
additional probe, which captures how much information (or progress) the adversary
gains from each probe. Also, by probing a server, the adversary learns whether it is up
or down.

The defender’s action is to select a server and reimage it. Reimaging a server takes
the server offline for a fixed number ∆ of time steps, after which the server goes online
under the control of the defender and with the adversary’s progress (i.e., number of
previous probes ρ) against that server erased (i.e., reset to zero).
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3.4 Rewards

Prakash and Wellman [22] define a family of utility functions. The exact utility function
can be chosen by setting the values of preference parameters, which specify the goal of
each player. The value of player p’s utility function up at a particular, as described by
Equations (10) and (11), depends on the number of servers in control of player p and
the number of servers offline. Note that the exact relation depends on the scenario (e.g.,
whether the primary goal is confidentiality or integrity), but in general, a higher number
of controlled servers yields a higher utility.

up(npc , nd) = wp · f
(
npc
M
, θp
)

+ (1− wp) · f
(
npc + nd
M

, θp
)

(10)

where npc is the number of servers which are up and in control of player p, nd is the
number of unavailable (down) servers, and f is a sigmoid function with parameters
θp ← (θpsl, θ

p
th):

f(x, θp) =
1

e−θ
p
sl·(x−θ

p
th)

(11)

where θsl and θth control the slope and position of the sigmoid’s inflection point, re-
spectively. Please note that, the value of variables used for computation of utility func-
tion (npc , nd), and therefore, the utility function depends on the time step. However, in
the writing time step is removed explicitly from the formulation, since the time step can
be understood from the context.

Table 2: Utility Environments

Utility Environment wa wd

0 control / availability 1 1
1 control / confidentiality 1 0
2 disrupt / availability 0 1
3 disrupt / confidentiality 0 0

Reward weight (wp) specifies the goal of
each player. As described by Prakash and Well-
man [22], there can be four extreme combinations
of this parameter, which are summarized in Ta-
ble 2. For example, in control / availability, both
players gain reward by having the servers up and
in their control. Or in disrupt / availability, which
is the most interesting case, the defender gains re-
ward by having the servers up and in its control, while the adversary gains reward by
bringing the servers down or having them in its control.

The defender’s cost of action is implicitly defined by the utility function. In other
words, the cost of reimaging a server comes from not receiving reward for the time steps
when the server is “down.” In contrast, the adversary’s reward accounts for the cost of
probing (CA), which is a fixed costs that can be avoided by not taking any action.

The reward given to the adversary (raτ ) and defender (rdτ ) at time τ is defined by:

rdτ = ud, raτ =

{
ua(nac , nd)− CA adversary probed a server at τ
ua(nac , nd) adversary did nothing at τ

(12)

3.5 Observations

A key aspect of the model is the players’ uncertainty regarding the state of the servers.
The defender does not know which servers have been compromised by the adversary.
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Further, the defender observes a probe only with a fixed probability 1 − ν (with prob-
ability ν, the probe is undetected). Consequently, the defender can only estimate the
number of probes against a server and whether a server is compromised. However, the
defender knows the status of all servers (i.e., whether the server is up or down; and if it
is down, how many time steps it requires to be back up again).

The adversary always observes when the defender reimages a compromised server,
but cannot observe reimaging an uncompromised server without probing it. Conse-
quently, the adversary knows with certainty only which servers are compromised.

Observation of a player p is represented as a vector of tuples opi , where opi corre-
sponds to player p’s observation of server i:

op = 〈op0, o
p
1, · · · , o

p
M−1〉 (13)

The adversary knows which servers are compromised and knows how many probes
it has initiated on each server. The adversary’s observation of server i is defined as a
tuple oai :

∀0≤i<M : oai = 〈ρ̃a, χ, ṽa〉 (14)

where ρ̃a is the number of probes launched by the adversary since the last observed
reimaging, χ is the player controlling of the server (always known by the adversary),
and ṽa ∈ {up, down} is the observed state of the server.

Unlike the adversary, the defender does not know who controls the servers. Fur-
ther, if ν is greater than 0, the defender can only estimate the number of probes. The
observation state of the defender of each server i can be modeled with a tuple odi :

∀0≤i<M : odi = 〈ρ̃d, v〉 (15)

where ρ̃d is the number of probes observed since the last reimaging, and v ∈ {up}∪N0

is the state of the server (always known by the defender).

4 Problem Formulation

In Section 3, we built an MTD model using a MAPOMDP. In this section, based on
this model, we design an adversarial game between the adversary and the defender. In
this setting, we assume that each player chooses a strategy to play, where a strategy is
a policy function that maps an observation of the environment to an action to be taken.
Since we assume that each strategy is a policy function, in the remainder of this paper,
we use the terms strategy and policy interchangeably.

4.1 Pure Strategy

A pure strategy πp for player p is a deterministic policy function πp(op) 7→ ap, which
given player p’s current observation of the system op produces an action ap to be taken
by the player. We let Πp denote the set of all pure strategies (i.e., policies) of player p.
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When the players are following pure policies πa ∈ Πa and πd ∈ Πd, their expected
cumulative utility can be expressed as the sum of discounted future rewards with dis-
count factor γ. Formally, we can express player p’s expected cumulative utility where p̄
denotes player p’s opponent as:

Up(πp, πp̄) = E

[ ∞∑
t=0

γτ · rpτ

∣∣∣∣∣ πp, πp̄
]

(16)

4.2 Mixed Strategy

One way to express stochastic policies is to use probability distributions over pure poli-
cies. A mixed strategy of player p is a probability distribution σp = {σp(πp)}πp∈Πp
over the player’s pure strategies Πp, where σp(πp) is the probability that player p
chooses policy πp.

We letΣp denote player p’s mixed strategy space. The expected utility of the adver-
sary and the defender when they are following mixed strategies σa ∈ Σa and σd ∈ Σd,
respectively, can be calculated as:

∀p∈{a,d} : Up(σp, σp̄) =
∑

πp∈Πp

∑
πp̄∈Πp̄

σp(πp) · σp̄(πp̄) · Up(πp, πp̄) (17)

Note that we overloaded the notation for the players’ pure-strategy utility to also denote
their mixed-strategy utility since the distinction will always be clear from the context
and function arguments.

4.3 Solution Concept

The aim of both players is to maximize their utility. As we are considering a rational
adversary and defender, we can assume that they always pick a strategy that maximizes
their own utility. A best response mixed strategy σp∗(σp̄) provides maximum utility for
player p given that its opponent p̄ is using mixed strategy σp̄. Formally, if the opponent
p̄ is using a mixed strategy σp̄, then player p’s best response σp∗ is

σp∗(σ
p̄) = argmaxσp U

p(σp, σp̄). (18)

We optimize each player’s strategy assuming that its opponent will always use a
best-response strategy. This formulation is in fact equivalent to finding a mixed-strategy
Nash equilibrium (MSNE) of the players’ policy spacesΠa andΠd. Formally, a profile
of mixed strategies (σa∗ , σ

d
∗) is a MSNE iff

∀p∈{a,d}∀σp∈Σp : Up(σp∗ , σ
p̄
∗) ≥ Up(σp, σp̄∗) (19)

That is, neither player can increase its expected utility by unilaterally changing its
strategy. In the next section, we propose an approach for finding the MSNE of the MTD
game, where Πa and Πd are the policy space of the players.
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5 Framework

In Section 4, we proposed a general-sum game based on the MAPOMDP model de-
scribed in Section 3. We concluded that finding an optimal action policy for the adver-
sary and the defender in the MTD setting is equivalent to finding an MSNE of the game.
In this section, we propose a computational approach and build a framework atop the
double oracle (Section 5.1) and DQL (Section 2.2) algorithms to find optimal action
policies for the adversary and the defender.

5.1 Solution Overview

The iterative Double Oracle (DO) algorithm [17] finds an MSNE of a game given an
arbitrary initial subsetΠp

0 of each player p’s strategy set (Πp
0 ⊂ Πp). The DO algorithm

extends these subsets iteratively by alternating between 1) finding MSNE of the game
spanned by these subsets and 2) extending the subsets with best-response strategies
against the latest MSNE.

We letΠp
t denote player p’s explored subset of strategies in iteration t of the DO al-

gorithm. In each iteration, for each player, the DO algorithm refers to a best response or-
acle, an algorithm which finds a pure-strategy best response, to compute a best-response
strategy against the opponent’s MSNE strategy. Then, it adds this best response to the
player’s strategy set. Formally, in each iteration:

∀p∈{a,d} : Πp
t+1 ← Πp

t ∪
{
πp∗
(
σp̄∗,t
)}

(20)

where σp∗,t is the MSNE of the player p given the strategy sets Πp
t . The DO algorithm

guarantees [17] the convergence of the MSNE of these strategy sets to an MSNE of the
game as long as the strategy sets are finite for both players. However, as the players’
strategy sets are vast (even though they are finite) in our game model, enumeration of
the strategy sets in search of the best response is infeasible.

For each player, we can use an InRL algorithm, such as Q-Learning [30], as a best-
response oracle to find a best-response pure strategy against the opponent’s MSNE strat-
egy. Since the opponent’s strategy is fixed, the player can use reinforcement learning by
treating the opponent’s actions as part of its localized environment.

5.2 Challenges

Solving the MAPOMDP model of Section 3 with the DO algorithm is not straight-
forward. In the following paragraphs, we discuss the issues faced while solving the
MAPOMDP model and propose approaches for resolving these issues.

Partial Observability For both players, state is only partially observable. This can pose
a significant challenge for the defender, who does not even know whether a server is
compromised or not. Consider, for example, the defender observing that a particular
server has been probed only a few times: this may mean that the server is safe since it
has not been probed enough times; but it may also mean that the adversary is not probing
it because the server is already compromised. We can try to address this limitation by
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allowing the defender’s policy to consider a long history of preceding observations;
however, this poses computational challenges since the size of the policy’s effective
state space explodes.

Since partial observability poses a challenge for the defender, we let the defender’s
policy use information from preceding observations. To avoid state-space explosion,
we feed this information into the policy in a compact form. In particular, we extend the
observed state of each server (i.e., number of observed probes and whether the server
is online) with (a) the amount of time since the last reimaging r (always known by the
defender) and (b) the amount of time since the last observed probe p̃d. So, the actual
state representation of the defender will be:

∀0≤i<M : odi = 〈ρ̃d, v, p̃d, r〉 (21)

where p̃d is the time since the last observed probe of the server, and r is the time since
the last reimage of the server.

Further, the adversary needs to make sure that the progress of the probes on the
servers is not reset. Therefore, it is important that the adversary knows the amount of
time since the last probe p of servers when deciding which server to probe. Hence, the
observation state of the adversary becomes:

∀0≤i<M : oai = 〈ρ̃a, χ, ṽa, p〉 (22)

Complexity of MSNE Computation In zero-sum games, computation of MSNE can
be done in polynomial time (e.g., linear programming). However, in general-sum games,
the problem of finding the MSNE of given strategy sets of players is PPAD-complete [27],
which makes computation of true MSNE infeasible for a game of non-trivial size.
Therefore, we use an ε-equilibrium solver, which produces an approximate correct re-
sult. One such solver is the Global Newton solver [6].

Equilibrium Selection Typically, the DO algorithm is used with zero-sum games,
where all equilibria of a game yield the same expected payoffs. However, in general-
sum games, there may exist multiple equilibria with significantly different payoffs. The
DO algorithm in general-sum games converges to only one of these equilibria. The
exact equilibrium to which the DO algorithm converges depends on the players’ initial
strategy sets and the output of the best-response oracle. However, in our experiments
(Section 6.3), we show that in our game, this problem is not significant in practice, i.e.,
all equilibria yield almost the same expected payoffs (Figure 3) regardless of the initial
strategy sets.

Model Complexity Due to the complexity of our MAPOMDP model, computation
of best response using tabular InRL approaches (e.g., Q-Learning) is computationally
infeasible. For example, the size of state space for the defender is (2T 3)M since each
of ρ̂d, p̂d, and r can take any value between 0 and T , and v can only take two values.
Although we expect that the values of ρ̂d, p̂d, and r be much smaller than T due to the
dynamics of the game, it is still infeasible to explore each state even once or store a
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tabular policy in memory for a game of non-trivial size on a conventional computer.
To address this challenge, we use computationally feasible approximate best-response
oracles to find approximate best-response strategies instead of best responses. Lanc-
tot et al. [11] show that deep reinforcement learning can be used as an approximate
best-response oracle. However, when approximate best responses are used instead of
true best responses, convergence guarantees are lost. In our experiments, we show that
this algorithm does converge in only a few iterations (see Figure 2b).

Short-term Losses vs. Long-term Rewards For both players, taking an action has a
negative short-term impact: for the defender, reimaging a server results in lower rewards
while the server is offline; for the adversary, probing incurs a cost. While these actions
can have positive long-term impact, benefits may not be experienced until much later:
for the defender, a reimaged server remains offline for a long period of time; for the
attacker, many probes may be needed until a server is finally compromised.

As a result, with typical temporal discount factors (e.g., γ = 0.9), it may be an
optimal policy for a player to never take any action since the short-term negative impact
outweighs the long-term benefit. In light of this, we use higher temporal discount factors
(e.g., γ = 0.99). However, such high values can pose challenges for deep reinforcement
learning since convergence will be much slower and less stable.

5.3 Solution Approach

Prakash and Wellman [22] proposed a set of heuristic strategies for each player (de-
scribed in Section 6.1). However, as these strategies are only a subset of the agents’
strategy sets, their MSNE is not necessarily an MSNE of the complete game. In Sec-
tion 5.1, we showed how we can find the MSNE of the game, given a subset of strategy
sets for each agent. In this section, based on our approach for resolving challenges of
solving our MTD game with the DO algorithm (Section 5.2), we propose our frame-
work to find the MSNE of the MTD game and therefore, the optimal decision making
policy for the adversary and the defender. Algorithm 2 shows a pseudo-code of our
framework.

We start by initializing the adversary’s and defender’s strategy sets Πa
0 and Πd

0

with heuristic policies (Section 6.1). From this stage, we proceed in iterations. In each
iteration, first, we compute an MSNE (σa, σd) of the game restricted to the current
strategy sets Πa and Πd, take the adversary’s equilibrium mixed strategy σa and train
an approximate best-response policy (πd+(σa)) for the defender assuming that the ad-
versary uses σa. Next, we add this new policy to the defender’s set of policies (Πd ←
Πd ∪ {πd+}).

Then, we do the same for the adversary. First, find the MSNE strategy of the de-
fender (σd), and train an approximate best-response policy (πa+(σd)) for the adversary
assuming that the defender uses σd. Then, we add this new policy to the adversary’s set
of policies (Πa ← Πa ∪ {πa+}).

In both cases, when computing an approximate best response (π+(σ∗)) for a player
against its opponent’s MSNE strategy σ∗, the opponent’s strategy σ∗ is fixed, so we may
consider it to be part of the player’s environment. As a result, we can cast the problem of
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finding an approximate best response as Independent Reinforcement Learning (InRL).
Each invocation of InRL, denoted as train() in Algorithm 2, receives the limit on
the number of training steps T of training and initial parameters θ. Moreover, we let
envp[σp̄] denote the InRL environment for player p when its opponent plays a mixed
strategy σp̄.

As we are dealing with discrete action and observation spaces in the MTD model,
DQL [18] is a suitable InRL algorithm for finding an approximate best response. In
each time step of the InRL, both players need to decide on an action. The learning
agent either chooses an action randomly (i.e., exploration), or follows its current policy.
The opponent, whose strategy is a fixed mixed strategy σp̄, refers to a pure strategy
πp̄ ∈ Π p̄ with probability distribution σp̄ and follows that policy.

The MSNE payoff evolves over the iterations of the DO algorithm: whenever we add
a new policy for an agent, which is trained against its opponent’s best mixed strategy
so far, the MSNE changes in favor of the agent. We continue these iterations until the
MSNE payoff of the defender and the adversary (Up(σp∗ , σ

p̄
∗)) converges. Formally, we

say that the the MSNE is converged for both players iff

∀p∈{a,d} : Up(πp+, σ
p̄) ≤ Up(σp, σp̄) (23)

where σp is player p’s current MSNE strategy and πp+ is the approximate best response
found for player p against its opponent’s current MSNE strategy. Convergence of the
algorithm means that neither the adversary nor defender could perform better by intro-
ducing a new policy.

6 Evaluation

In this section, we first describe the heuristic strategies of the MTD game (Section 6.1)
proposed by Prakash and Wellman [22]. Next, we discuss our implementation of the
framework (Section 6.2). Finally, we present the numerical results (Section 6.3).

6.1 Baseline Heuristic Strategies

Prakash and Wellman [22] proposed a set of heuristic strategies for both the adversary
and the defender. Earlier, we used these strategies as our initial policy space for the DO
algorithm. In this section, we describe these heuristics.

Adversary’s Heuristic Strategies

– Uniform-Uncompromised: Adversary launches a probe every PA time steps, al-
ways selecting the target server uniformly at random from the servers under the
defender’s control.

– MaxProbe-Uncompromised: Adversary launches a probe every PA time steps, al-
ways targeting the server under the defender’s control that has been probed the most
since the last reimage (breaking ties uniformly at random).
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Table 3: Payoff Table for Heuristic and Reinforcement Learning Based Strategies

Adversary
Defender

No-OP ControlThreshold PCP Uniform MaxProbe Mixed-Strategy DQL

No-OP
26.89

98.20
26.89

98.20
26.89

98.20
46.03

95.83
26.89

98.20
33.23

97.47

MaxProbe
78.66

47.69
75.67

49.62
36.58

93.01
64.56

67.12
41.99

86.82
45.87

87.84

Uniform
79.08

46.74
70.97

51.58
44.43

89.48
56.83

76.23
57.14

75.21
45.91

88.16

ControlThreshold
63.64

85.98
65.58

85.35
46.38

88.81
59.54

81.32
60.43

80.09
45.91

87.91

Mixed-Strategy DQL
62.78

72.29
58.31

82.45
45.76

91.32
55.31

87.10
44.57

91.32
45.23

92.38

– Control-Threshold: Adversary launches a probe if the adversary controls less than a
threshold τ fraction of the servers, always targeting the server under the defender’s
control that has been probed the most since the last reimage (breaking ties uni-
formly at random).

– No-Op: Adversary never launches a probe.

Defender’s Heuristic Strategies

– Uniform: Defender reimages a server every PD time steps, always selecting a server
that is up uniformly at random.

– MaxProbe: Defender reimages a server every PD time steps, always selecting the
server that has been probed the most (as observed by the defender) since the last
reimage (breaking ties uniformly at random).

– Probe-Count-or-Period (PCP): Defender reimages a server which has not been
probed in the last P time steps or has been probed more than π times (selecting
uniformly at random if there are multiple such servers).

– Control-Threshold: Defender assumes that all of the observed probes on a server
except the last one were unsuccessful. Then, it calculates the probability of a server
being compromised by the last probe as 1 − e−α·(ρ+1). Finally, if the expected
number of servers in its control is below τ ·M and it has not reimaged any servers in
PD, then it reimages the server with the highest probability of being compromised
(breaking ties uniformly at random). In other words, it reimages a server iff the last
reimage was at least PD time steps ago and E[ndc ] ≤M · τ .

– No-Op: Defender never reimages any servers.

6.2 Implementation

We implemented the MAPOMDP of Section 3 as an Open AI Gym [4] environment. We
used Stable-Baselines’ DQN [8] as the implementation of the DQL. Stable-Baselines
internally uses TensorFlow [1] as the neural network framework. For the artificial neural
network as ourQ approximator, we used a feed forward network with two hidden layers
of size 32, and tanh as our activation function. The rest of parameters are described in
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Fig. 2: Figure 2a shows the learning curve of the players. In Figure 2b, iteration 0 shows
the MSNE payoff of the heuristics while each DQN training for adversary and defender
happens at odd and even iterations, respectively.

Table 1. We implemented the remainder of our framework in Python, including the dou-
ble oracle algorithm. For computation of the mixed-strategy ε-equilibrium of a general-
sum game, we used the Gambit-Project’s Global Newton implementation [16].

We run the experiments on a computer cluster, where each node has two 14-core 2.4
GHz Intel Xeon CPUs and two NVIDIA P100 GPUs. Each node is capable of running
≈ 85 steps of DQL per second, which results in about 1.5 hours of running time per
each invocation of the best-response oracle (i.e., DQL training for the adversary or
defender). Note that the DQL algorithm is not distributed, so we use only one core of
the CPU, and one GPU. It is important to note that in practice, optimal policies can be
pre-computed, and then executed to mitigate attacks when needed. When policies are
executed, inference takes only milliseconds.

6.3 Numerical Results

For acquiring the following results, our MTD model is always instantiated using base-
line parameters from Table 1, unless explicitly specified otherwise.

DQL Convergence and Stability Figure 2a shows the learning curve of the agents
for their first iteration of the DO algorithm (Iteration 1 and 2). On average, the DQL
algorithm converges in 3.88 ·105 steps (49.11 minutes) for the adversary, and 1.10 ·105

steps (18.13 minutes) for the defender. We can see that over the iterations of the DO
algorithm, the speed of the training decreases. For example, in the first iteration of ad-
versary training, DQL’s speed is 131.67 steps per second, while for the first iteration
of defender training, DQL’s speed reduces to 101.12 steps per second. Further, in the
fourth training of the adversary, training speed is decreased furthermore to 52.34 itera-
tions per second.
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Since over the iterations of the DO algorithm, the fraction of DQL strategies in both
players MSNE increase (0% vs 51% for the first trainings), and inference from a DQL
policy, which requires matrix multiplications, is slower than inference from a heuristic
strategy, which requires only a few operations, we can conclude that DQL policies will
be more dominant over the iterations. This means that DQL policies are performing
better than heuristics over the iterations.

To measure the stability of the DQL algorithm, we extracted the first DQL trainings
for both players. The DQL algorithm converges to almost the same expected cumulative
reward with mean and standard deviation of 0.672 and 0.021 for the adversary and 0.878
and 0.011 for the defender. Table 3, which we will discuss in detail later, shows that
these policies are significantly better than the heuristics.
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Fig. 3: Comparison of stability for differ-
ent configurations. The blue and red boxes
show the adversary’s and defender’s pay-
off, respectively. Each box shows the re-
sult of eight runs.

DO Convergence and Stability Figure 2b
shows the evolution of MSNE payoff over
the iterations of the DO algorithm over
three experiments with baseline values of
Table 1. In this figure, each training for
the adversary and defender happens at odd
and even iterations, respectively, while it-
eration 0 is the equilibrium of heuris-
tic policies. The figure shows that the
DO algorithm indeed converges with ≈ 4
trainings for each player, i.e., 6 hours of
training in total. Comparing multiple runs
with the same configuration shows that the
DO algorithm with multiple approxima-
tions (e.g., approximation with deep net-
works, approximation on equilibrium com-
putation) is stable since the average and
standard deviation of the MSNE payoff is
47.81 and 1.77 for the adversary and 88.92
and 1.04 for the defender. For different configurations, the difference between final ex-
pected payoffs of eight DO runs is described in Figure 3.

Equilibrium Selection To analyze the impact of equilibrium selection on the MSNE
payoff of the game, we executed Algorithm 2, but without heuristics as initial strategy
sets. Instead, the initial strategy sets are set to only NoOP adversary and NoOP defender.
As we can see in Figure 3, regardless of the initial strategy sets, the resulting policies
always converge to an MSNE with the same payoffs for both players. As a result, equi-
librium selection is not an issue in practice since we always end with approximately the
same equilibrium.

Heuristic Strategies Table 3 shows the utilities for all combinations of heuristic de-
fender and adversary strategies with baselines parameters. The optimal strategy given
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only heuristics as players’ strategy sets are PCP for the defender, and control threshold
for the adversary. This table also compares these heuristic strategies to mixed-strategy
policies computed using DO and DQL. We can see that it is optimal for both play-
ers to commit to the mixed strategy DQL, since no player can receive more utility by
committing to another policy, while the opponent still commits to the DQL policy.

Resiliency to Under/Over Estimation One interesting observation of the DQL poli-
cies is their resiliency to under/over estimation of the opponent. As a showcase for
when the defender underestimates the adversary, assume a defender who has trained
with CA = 0.2 plays with an adversary who is trained with CA = 0.05. They receive
88.18 and 61.93 utility, respectively. For the defender, this utility is the same as when it
correctly predicts the cost of attack (Figure 3).

7 Related Work

In this work, we used multi-agent reinforcement learning to find optimal policies for
the adversary and the defender in an MTD game model. In prior work, researchers
have investigated both the application of reinforcement learning in cyber-security (Sec-
tion 7.2) and game-theoretic models for MTD (Section 7.1). Perhaps the most closely
related work on integration of reinforcement learning and moving target defense is the
work of Sengupta and Kambhampati [24]. They propose a Bayesian Stackelberg game
model to MTD and solve (i.e., find the optimal action policy for the defender) it using
Q-Learning. One main difference between our model and their model is that they as-
sumed that the adversary is aware of the defender’s policy, while in our model, not only
both players are unaware of the opponent’s strategy, they might not even observe the
opponent’s actions. One key advantage of our model is that we consider multiple target
systems while they consider a single target system with four possible states. This makes
a tabular approach (Q-Learning) feasible. However, tabular approaches scale poorly to
more complex systems.

7.1 Moving Target Defense

One of the main research areas in moving target defense is to model interactions be-
tween the adversaries and the defenders. In the area of game-theoretic models for mov-
ing target defense, the most closely related work is from Prakash et al. [22], which in-
troduces the model that our work uses. This model can also be used for defense against
DDoS attacks [31], and defense for web applications [25]. Further, in this area, re-
searchers have proposed MTD game models based on Stackelberg games [13], Markov
Games [12, 28], Markov Decision Process [32], and FlipIt game [20].

For solving a game model (i.e., finding the optimal playing strategies), numerous
approaches such as solving a min-max problem [13], non-linear programming [12],
Bellman equation [28, 32], Bayesian belief networks [2], and reinforcement learning [9,
20] has been suggested.
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7.2 Reinforcement Learning for cybersecurity

Application of machine learning—especially deep reinforcement learning (DRL)—for
cybersecurity has gained attention recently. Nguyen et al. [19] surveyed current lit-
erature on applications of DRL on cybersecurity. These applications include: DRL-
based security methods for cyber-physical systems, autonomous intrusion detection
techniques [10], and multi-agent DRL-based game-theoretic simulations for defense
strategies against cyber attacks.

For example, Malialis [14, 15] applied multi-agent deep reinforcement learning on
network routers to throttle the processing rate in order to prevent distributed denial of
service (DDoS) attacks. Bhosale et al. [3] proposed a cooperative multi-agent reinforce-
ment learning for intelligent systems [7] to enable quick responses. Another example for
multi-agent reinforcement learning is the fuzzy Q-Learning approach for detecting and
preventing intrusions in wireless sensor networks (WSN) [26]. Furthermore, Tong et
al. [29] proposed a multi-agent reinforcement learning framework for alert correlation
based on double oracles.

8 Conclusion

Moving target defense tries to increase adversary’s uncertainty and attack cost by dy-
namically changing host and network configurations. In this paper, we have proposed
a multi-agent reinforcement learning approach for finding MTD strategies based on an
adaptive MTD model. To improve the agents’ performance in partially-observable en-
vironments, we proposed a compact memory presentation for the agents. Further, we
showed that the double oracle algorithm with DQL as best-response oracle is a feasible
and promising solution for finding optimal policies in general-sum adversarial games
as it is stable and converges rapidly.
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